Copied to
clipboard

G = C322CSU2(𝔽3)  order 432 = 24·33

2nd semidirect product of C32 and CSU2(𝔽3) acting via CSU2(𝔽3)/Q8=S3

non-abelian, soluble

Aliases: C322CSU2(𝔽3), (C3×C6).7S4, Q8⋊He3.2C2, C6.17(C3⋊S4), Q8.(He3⋊C2), C3.3(C6.5S4), (Q8×C32).12S3, C2.2(C32⋊S4), (C3×SL2(𝔽3)).3S3, (C3×Q8).6(C3⋊S3), SmallGroup(432,257)

Series: Derived Chief Lower central Upper central

C1C2C3×Q8Q8⋊He3 — C322CSU2(𝔽3)
C1C2Q8C3×Q8Q8×C32Q8⋊He3 — C322CSU2(𝔽3)
Q8⋊He3 — C322CSU2(𝔽3)
C1C6

Generators and relations for C322CSU2(𝔽3)
 G = < a,b,c,d,e,f | a3=b3=c4=e3=1, d2=f2=c2, ab=ba, ac=ca, ad=da, eae-1=ab-1, faf-1=a-1, bc=cb, bd=db, be=eb, bf=fb, dcd-1=fdf-1=c-1, ece-1=cd, fcf-1=c2d, ede-1=c, fef-1=e-1 >

Subgroups: 368 in 68 conjugacy classes, 14 normal (11 characteristic)
C1, C2, C3, C3, C4, C6, C6, C8, Q8, Q8, C32, C32, Dic3, C12, Q16, C3×C6, C3×C6, C3⋊C8, C24, SL2(𝔽3), Dic6, C3×Q8, C3×Q8, He3, C3×Dic3, C3×C12, C3⋊Q16, C3×Q16, CSU2(𝔽3), C2×He3, C3×C3⋊C8, C3×SL2(𝔽3), C3×Dic6, Q8×C32, He33C4, C3×C3⋊Q16, C3×CSU2(𝔽3), Q8⋊He3, C322CSU2(𝔽3)
Quotients: C1, C2, S3, C3⋊S3, S4, CSU2(𝔽3), He3⋊C2, C3⋊S4, C6.5S4, C32⋊S4, C322CSU2(𝔽3)

Character table of C322CSU2(𝔽3)

 class 123A3B3C3D3E3F4A4B6A6B6C6D6E6F8A8B12A12B12C12D12E12F12G24A24B24C24D
 size 11116242424636116242424181866121212363618181818
ρ111111111111111111111111111111    trivial
ρ2111111111-1111111-1-111111-1-1-1-1-1-1    linear of order 2
ρ32222-1-12-12022-1-1-120022-1-1-1000000    orthogonal lifted from S3
ρ42222-12-1-12022-1-12-10022-1-1-1000000    orthogonal lifted from S3
ρ52222-1-1-122022-12-1-10022-1-1-1000000    orthogonal lifted from S3
ρ622222-1-1-120222-1-1-10022222000000    orthogonal lifted from S3
ρ72-2222-1-1-100-2-2-21112-200000002-2-22    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ82-2222-1-1-100-2-2-2111-220000000-222-2    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ933333000-1-133300011-1-1-1-1-1-1-11111    orthogonal lifted from S4
ρ1033333000-11333000-1-1-1-1-1-1-111-1-1-1-1    orthogonal lifted from S4
ρ1133-3+3-3/2-3-3-3/200003-1-3+3-3/2-3-3-3/20000-1-1-3-3-3/2-3+3-3/2000ζ65ζ6ζ6ζ65ζ6ζ65    complex lifted from He3⋊C2
ρ1233-3-3-3/2-3+3-3/2000031-3-3-3/2-3+3-3/2000011-3+3-3/2-3-3-3/2000ζ32ζ3ζ3ζ32ζ3ζ32    complex lifted from He3⋊C2
ρ1333-3-3-3/2-3+3-3/200003-1-3-3-3/2-3+3-3/20000-1-1-3+3-3/2-3-3-3/2000ζ6ζ65ζ65ζ6ζ65ζ6    complex lifted from He3⋊C2
ρ1433-3+3-3/2-3-3-3/20000-11-3+3-3/2-3-3-3/20000-1-1ζ6ζ65-1--3-1+-32ζ3ζ32ζ6ζ65ζ6ζ65    complex lifted from C32⋊S4
ρ1533-3+3-3/2-3-3-3/20000-1-1-3+3-3/2-3-3-3/2000011ζ6ζ65-1--3-1+-32ζ65ζ6ζ32ζ3ζ32ζ3    complex lifted from C32⋊S4
ρ1633-3-3-3/2-3+3-3/20000-11-3-3-3/2-3+3-3/20000-1-1ζ65ζ6-1+-3-1--32ζ32ζ3ζ65ζ6ζ65ζ6    complex lifted from C32⋊S4
ρ1733-3-3-3/2-3+3-3/20000-1-1-3-3-3/2-3+3-3/2000011ζ65ζ6-1+-3-1--32ζ6ζ65ζ3ζ32ζ3ζ32    complex lifted from C32⋊S4
ρ1833-3+3-3/2-3-3-3/2000031-3+3-3/2-3-3-3/2000011-3-3-3/2-3+3-3/2000ζ3ζ32ζ32ζ3ζ32ζ3    complex lifted from He3⋊C2
ρ194-444-2-21100-4-42-12-10000000000000    symplectic lifted from C6.5S4, Schur index 2
ρ204-444-21-2100-4-42-1-120000000000000    symplectic lifted from C6.5S4, Schur index 2
ρ214-444411100-4-4-4-1-1-10000000000000    symplectic lifted from CSU2(𝔽3), Schur index 2
ρ224-444-211-200-4-422-1-10000000000000    symplectic lifted from C6.5S4, Schur index 2
ρ236666-3000-2066-300000-2-2111000000    orthogonal lifted from C3⋊S4
ρ2466-3-3-3-3+3-30000-20-3-3-3-3+3-30000001--31+-31--31+-3-2000000    complex lifted from C32⋊S4
ρ2566-3+3-3-3-3-30000-20-3+3-3-3-3-30000001+-31--31+-31--3-2000000    complex lifted from C32⋊S4
ρ266-6-3-3-3-3+3-30000003+3-33-3-300002-2000000083ζ38ζ387ζ3285ζ3287ζ385ζ383ζ328ζ32    complex faithful
ρ276-6-3-3-3-3+3-30000003+3-33-3-30000-22000000087ζ385ζ383ζ328ζ3283ζ38ζ387ζ3285ζ32    complex faithful
ρ286-6-3+3-3-3-3-30000003-3-33+3-300002-2000000083ζ328ζ3287ζ385ζ387ζ3285ζ3283ζ38ζ3    complex faithful
ρ296-6-3+3-3-3-3-30000003-3-33+3-30000-22000000087ζ3285ζ3283ζ38ζ383ζ328ζ3287ζ385ζ3    complex faithful

Smallest permutation representation of C322CSU2(𝔽3)
On 144 points
Generators in S144
(5 138 130)(6 139 131)(7 140 132)(8 137 129)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(33 50 41)(34 51 42)(35 52 43)(36 49 44)(53 61 69)(54 62 70)(55 63 71)(56 64 72)(57 65 76)(58 66 73)(59 67 74)(60 68 75)(101 109 117)(102 110 118)(103 111 119)(104 112 120)(105 113 122)(106 114 123)(107 115 124)(108 116 121)(125 141 133)(126 142 134)(127 143 135)(128 144 136)
(1 22 14)(2 23 15)(3 24 16)(4 21 13)(5 138 130)(6 139 131)(7 140 132)(8 137 129)(9 25 17)(10 26 18)(11 27 19)(12 28 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(33 50 41)(34 51 42)(35 52 43)(36 49 44)(53 69 61)(54 70 62)(55 71 63)(56 72 64)(57 76 65)(58 73 66)(59 74 67)(60 75 68)(77 93 85)(78 94 86)(79 95 87)(80 96 88)(81 99 89)(82 100 90)(83 97 91)(84 98 92)(101 117 109)(102 118 110)(103 119 111)(104 120 112)(105 122 113)(106 123 114)(107 124 115)(108 121 116)(125 141 133)(126 142 134)(127 143 135)(128 144 136)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 11 3 9)(2 10 4 12)(5 141 7 143)(6 144 8 142)(13 20 15 18)(14 19 16 17)(21 28 23 26)(22 27 24 25)(29 34 31 36)(30 33 32 35)(37 42 39 44)(38 41 40 43)(45 51 47 49)(46 50 48 52)(53 58 55 60)(54 57 56 59)(61 66 63 68)(62 65 64 67)(69 73 71 75)(70 76 72 74)(77 83 79 81)(78 82 80 84)(85 91 87 89)(86 90 88 92)(93 97 95 99)(94 100 96 98)(101 106 103 108)(102 105 104 107)(109 114 111 116)(110 113 112 115)(117 123 119 121)(118 122 120 124)(125 132 127 130)(126 131 128 129)(133 140 135 138)(134 139 136 137)
(1 58 29)(2 55 33)(3 60 31)(4 53 35)(5 96 120)(6 98 123)(7 94 118)(8 100 121)(9 56 32)(10 59 34)(11 54 30)(12 57 36)(13 61 43)(14 66 37)(15 63 41)(16 68 39)(17 64 40)(18 67 42)(19 62 38)(20 65 44)(21 69 52)(22 73 45)(23 71 50)(24 75 47)(25 72 48)(26 74 51)(27 70 46)(28 76 49)(77 107 128)(78 102 132)(79 105 126)(80 104 130)(81 103 127)(82 108 129)(83 101 125)(84 106 131)(85 115 136)(86 110 140)(87 113 134)(88 112 138)(89 111 135)(90 116 137)(91 109 133)(92 114 139)(93 124 144)(95 122 142)(97 117 141)(99 119 143)
(1 77 3 79)(2 81 4 83)(5 72 7 70)(6 76 8 74)(9 78 11 80)(10 84 12 82)(13 91 15 89)(14 85 16 87)(17 86 19 88)(18 92 20 90)(21 97 23 99)(22 93 24 95)(25 94 27 96)(26 98 28 100)(29 107 31 105)(30 104 32 102)(33 103 35 101)(34 106 36 108)(37 115 39 113)(38 112 40 110)(41 111 43 109)(42 114 44 116)(45 124 47 122)(46 120 48 118)(49 121 51 123)(50 119 52 117)(53 125 55 127)(54 130 56 132)(57 129 59 131)(58 128 60 126)(61 133 63 135)(62 138 64 140)(65 137 67 139)(66 136 68 134)(69 141 71 143)(73 144 75 142)

G:=sub<Sym(144)| (5,138,130)(6,139,131)(7,140,132)(8,137,129)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,50,41)(34,51,42)(35,52,43)(36,49,44)(53,61,69)(54,62,70)(55,63,71)(56,64,72)(57,65,76)(58,66,73)(59,67,74)(60,68,75)(101,109,117)(102,110,118)(103,111,119)(104,112,120)(105,113,122)(106,114,123)(107,115,124)(108,116,121)(125,141,133)(126,142,134)(127,143,135)(128,144,136), (1,22,14)(2,23,15)(3,24,16)(4,21,13)(5,138,130)(6,139,131)(7,140,132)(8,137,129)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,50,41)(34,51,42)(35,52,43)(36,49,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,76,65)(58,73,66)(59,74,67)(60,75,68)(77,93,85)(78,94,86)(79,95,87)(80,96,88)(81,99,89)(82,100,90)(83,97,91)(84,98,92)(101,117,109)(102,118,110)(103,119,111)(104,120,112)(105,122,113)(106,123,114)(107,124,115)(108,121,116)(125,141,133)(126,142,134)(127,143,135)(128,144,136), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,11,3,9)(2,10,4,12)(5,141,7,143)(6,144,8,142)(13,20,15,18)(14,19,16,17)(21,28,23,26)(22,27,24,25)(29,34,31,36)(30,33,32,35)(37,42,39,44)(38,41,40,43)(45,51,47,49)(46,50,48,52)(53,58,55,60)(54,57,56,59)(61,66,63,68)(62,65,64,67)(69,73,71,75)(70,76,72,74)(77,83,79,81)(78,82,80,84)(85,91,87,89)(86,90,88,92)(93,97,95,99)(94,100,96,98)(101,106,103,108)(102,105,104,107)(109,114,111,116)(110,113,112,115)(117,123,119,121)(118,122,120,124)(125,132,127,130)(126,131,128,129)(133,140,135,138)(134,139,136,137), (1,58,29)(2,55,33)(3,60,31)(4,53,35)(5,96,120)(6,98,123)(7,94,118)(8,100,121)(9,56,32)(10,59,34)(11,54,30)(12,57,36)(13,61,43)(14,66,37)(15,63,41)(16,68,39)(17,64,40)(18,67,42)(19,62,38)(20,65,44)(21,69,52)(22,73,45)(23,71,50)(24,75,47)(25,72,48)(26,74,51)(27,70,46)(28,76,49)(77,107,128)(78,102,132)(79,105,126)(80,104,130)(81,103,127)(82,108,129)(83,101,125)(84,106,131)(85,115,136)(86,110,140)(87,113,134)(88,112,138)(89,111,135)(90,116,137)(91,109,133)(92,114,139)(93,124,144)(95,122,142)(97,117,141)(99,119,143), (1,77,3,79)(2,81,4,83)(5,72,7,70)(6,76,8,74)(9,78,11,80)(10,84,12,82)(13,91,15,89)(14,85,16,87)(17,86,19,88)(18,92,20,90)(21,97,23,99)(22,93,24,95)(25,94,27,96)(26,98,28,100)(29,107,31,105)(30,104,32,102)(33,103,35,101)(34,106,36,108)(37,115,39,113)(38,112,40,110)(41,111,43,109)(42,114,44,116)(45,124,47,122)(46,120,48,118)(49,121,51,123)(50,119,52,117)(53,125,55,127)(54,130,56,132)(57,129,59,131)(58,128,60,126)(61,133,63,135)(62,138,64,140)(65,137,67,139)(66,136,68,134)(69,141,71,143)(73,144,75,142)>;

G:=Group( (5,138,130)(6,139,131)(7,140,132)(8,137,129)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,50,41)(34,51,42)(35,52,43)(36,49,44)(53,61,69)(54,62,70)(55,63,71)(56,64,72)(57,65,76)(58,66,73)(59,67,74)(60,68,75)(101,109,117)(102,110,118)(103,111,119)(104,112,120)(105,113,122)(106,114,123)(107,115,124)(108,116,121)(125,141,133)(126,142,134)(127,143,135)(128,144,136), (1,22,14)(2,23,15)(3,24,16)(4,21,13)(5,138,130)(6,139,131)(7,140,132)(8,137,129)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,50,41)(34,51,42)(35,52,43)(36,49,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,76,65)(58,73,66)(59,74,67)(60,75,68)(77,93,85)(78,94,86)(79,95,87)(80,96,88)(81,99,89)(82,100,90)(83,97,91)(84,98,92)(101,117,109)(102,118,110)(103,119,111)(104,120,112)(105,122,113)(106,123,114)(107,124,115)(108,121,116)(125,141,133)(126,142,134)(127,143,135)(128,144,136), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,11,3,9)(2,10,4,12)(5,141,7,143)(6,144,8,142)(13,20,15,18)(14,19,16,17)(21,28,23,26)(22,27,24,25)(29,34,31,36)(30,33,32,35)(37,42,39,44)(38,41,40,43)(45,51,47,49)(46,50,48,52)(53,58,55,60)(54,57,56,59)(61,66,63,68)(62,65,64,67)(69,73,71,75)(70,76,72,74)(77,83,79,81)(78,82,80,84)(85,91,87,89)(86,90,88,92)(93,97,95,99)(94,100,96,98)(101,106,103,108)(102,105,104,107)(109,114,111,116)(110,113,112,115)(117,123,119,121)(118,122,120,124)(125,132,127,130)(126,131,128,129)(133,140,135,138)(134,139,136,137), (1,58,29)(2,55,33)(3,60,31)(4,53,35)(5,96,120)(6,98,123)(7,94,118)(8,100,121)(9,56,32)(10,59,34)(11,54,30)(12,57,36)(13,61,43)(14,66,37)(15,63,41)(16,68,39)(17,64,40)(18,67,42)(19,62,38)(20,65,44)(21,69,52)(22,73,45)(23,71,50)(24,75,47)(25,72,48)(26,74,51)(27,70,46)(28,76,49)(77,107,128)(78,102,132)(79,105,126)(80,104,130)(81,103,127)(82,108,129)(83,101,125)(84,106,131)(85,115,136)(86,110,140)(87,113,134)(88,112,138)(89,111,135)(90,116,137)(91,109,133)(92,114,139)(93,124,144)(95,122,142)(97,117,141)(99,119,143), (1,77,3,79)(2,81,4,83)(5,72,7,70)(6,76,8,74)(9,78,11,80)(10,84,12,82)(13,91,15,89)(14,85,16,87)(17,86,19,88)(18,92,20,90)(21,97,23,99)(22,93,24,95)(25,94,27,96)(26,98,28,100)(29,107,31,105)(30,104,32,102)(33,103,35,101)(34,106,36,108)(37,115,39,113)(38,112,40,110)(41,111,43,109)(42,114,44,116)(45,124,47,122)(46,120,48,118)(49,121,51,123)(50,119,52,117)(53,125,55,127)(54,130,56,132)(57,129,59,131)(58,128,60,126)(61,133,63,135)(62,138,64,140)(65,137,67,139)(66,136,68,134)(69,141,71,143)(73,144,75,142) );

G=PermutationGroup([[(5,138,130),(6,139,131),(7,140,132),(8,137,129),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(33,50,41),(34,51,42),(35,52,43),(36,49,44),(53,61,69),(54,62,70),(55,63,71),(56,64,72),(57,65,76),(58,66,73),(59,67,74),(60,68,75),(101,109,117),(102,110,118),(103,111,119),(104,112,120),(105,113,122),(106,114,123),(107,115,124),(108,116,121),(125,141,133),(126,142,134),(127,143,135),(128,144,136)], [(1,22,14),(2,23,15),(3,24,16),(4,21,13),(5,138,130),(6,139,131),(7,140,132),(8,137,129),(9,25,17),(10,26,18),(11,27,19),(12,28,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(33,50,41),(34,51,42),(35,52,43),(36,49,44),(53,69,61),(54,70,62),(55,71,63),(56,72,64),(57,76,65),(58,73,66),(59,74,67),(60,75,68),(77,93,85),(78,94,86),(79,95,87),(80,96,88),(81,99,89),(82,100,90),(83,97,91),(84,98,92),(101,117,109),(102,118,110),(103,119,111),(104,120,112),(105,122,113),(106,123,114),(107,124,115),(108,121,116),(125,141,133),(126,142,134),(127,143,135),(128,144,136)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,11,3,9),(2,10,4,12),(5,141,7,143),(6,144,8,142),(13,20,15,18),(14,19,16,17),(21,28,23,26),(22,27,24,25),(29,34,31,36),(30,33,32,35),(37,42,39,44),(38,41,40,43),(45,51,47,49),(46,50,48,52),(53,58,55,60),(54,57,56,59),(61,66,63,68),(62,65,64,67),(69,73,71,75),(70,76,72,74),(77,83,79,81),(78,82,80,84),(85,91,87,89),(86,90,88,92),(93,97,95,99),(94,100,96,98),(101,106,103,108),(102,105,104,107),(109,114,111,116),(110,113,112,115),(117,123,119,121),(118,122,120,124),(125,132,127,130),(126,131,128,129),(133,140,135,138),(134,139,136,137)], [(1,58,29),(2,55,33),(3,60,31),(4,53,35),(5,96,120),(6,98,123),(7,94,118),(8,100,121),(9,56,32),(10,59,34),(11,54,30),(12,57,36),(13,61,43),(14,66,37),(15,63,41),(16,68,39),(17,64,40),(18,67,42),(19,62,38),(20,65,44),(21,69,52),(22,73,45),(23,71,50),(24,75,47),(25,72,48),(26,74,51),(27,70,46),(28,76,49),(77,107,128),(78,102,132),(79,105,126),(80,104,130),(81,103,127),(82,108,129),(83,101,125),(84,106,131),(85,115,136),(86,110,140),(87,113,134),(88,112,138),(89,111,135),(90,116,137),(91,109,133),(92,114,139),(93,124,144),(95,122,142),(97,117,141),(99,119,143)], [(1,77,3,79),(2,81,4,83),(5,72,7,70),(6,76,8,74),(9,78,11,80),(10,84,12,82),(13,91,15,89),(14,85,16,87),(17,86,19,88),(18,92,20,90),(21,97,23,99),(22,93,24,95),(25,94,27,96),(26,98,28,100),(29,107,31,105),(30,104,32,102),(33,103,35,101),(34,106,36,108),(37,115,39,113),(38,112,40,110),(41,111,43,109),(42,114,44,116),(45,124,47,122),(46,120,48,118),(49,121,51,123),(50,119,52,117),(53,125,55,127),(54,130,56,132),(57,129,59,131),(58,128,60,126),(61,133,63,135),(62,138,64,140),(65,137,67,139),(66,136,68,134),(69,141,71,143),(73,144,75,142)]])

Matrix representation of C322CSU2(𝔽3) in GL5(𝔽73)

10000
01000
00104
000847
000064
,
10000
01000
00800
00080
00008
,
072000
10000
00100
00010
00001
,
121000
161000
00100
00010
00001
,
667000
6866000
0013126
0019048
004060
,
2741000
046000
00726065
0005417
0006919

G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,8,0,0,0,4,47,64],[1,0,0,0,0,0,1,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,8],[0,1,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[12,1,0,0,0,1,61,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[6,68,0,0,0,67,66,0,0,0,0,0,13,19,4,0,0,1,0,0,0,0,26,48,60],[27,0,0,0,0,41,46,0,0,0,0,0,72,0,0,0,0,60,54,69,0,0,65,17,19] >;

C322CSU2(𝔽3) in GAP, Magma, Sage, TeX

C_3^2\rtimes_2{\rm CSU}_2({\mathbb F}_3)
% in TeX

G:=Group("C3^2:2CSU(2,3)");
// GroupNames label

G:=SmallGroup(432,257);
// by ID

G=gap.SmallGroup(432,257);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1512,57,254,261,3784,5681,172,2273,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=e^3=1,d^2=f^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b^-1,f*a*f^-1=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d^-1=f*d*f^-1=c^-1,e*c*e^-1=c*d,f*c*f^-1=c^2*d,e*d*e^-1=c,f*e*f^-1=e^-1>;
// generators/relations

Export

Character table of C322CSU2(𝔽3) in TeX

׿
×
𝔽